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Abstract

This document will contain answers to selected exercises and important proofs from the book, ”Ele-
mentary Introduction to Number Theory” by Calvin Long. I think this is a very good book for beginners
who want to learn Number Theory. The prerequisites are minimal, it is my opinion that decent knowl-
edge of high-school mathematics and a lot of patience are more than enough. For the more interested
kind, I recommend complementing the book with the Theory of Numbers YouTube lecture series by 1998
Fields Medallist Richard E. Borcherds.

Exercises that I found difficult will be on the document, so do not expect this to be a full fledged
solution manual. The book itself offers solutions to select questions in the end and the reader should
look at those. Proofs on the other hand, are mostly included here, as they are very important to my
understanding of the subject. Some ideas or methods might be inaccurate or plain wrong, please send
corrections and feedback here.

I don’t want to number all the sections as they appear in the book since that would look very confusing
with the automatic numbering that LATEXdoes for us. There aren’t many problems per section, so finding
the question from the title of the section should be straightforward. If there are better ways to do this,
I would love to hear from you.

Disclaimer: This document is a work in progress, and progress will be slow.
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1 Preliminary Considerations

1.1 Summation and Multiplication Notation

1. Evaluate
∑n

i=1(ai − ai−1) given that a0 = 0.

Let Sn be the value of the sum for n ∈ N. We can easily see that S1 = a1. Now, we will write the following
sum values and add them up.

S1 = a1 − a0
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S2 = a2 − a1

S3 = a3 − a2

. . .

Sn = an − an−1

Adding all the equations gives Sn = an.

2. Use the result of exercise 1 to prove that
∑n

i=1 i = n(n+ 1)/2.

Let ak = k(k + 1)/2, we need to somehow obtain the LHS of the required equation and our problem is
solved.

ak − ak−1 =
k(k + 1)

2
− (k − 1)k

2
= k.

This shows us that
∑n

i=1(ai − ai−1) =
∑n

i=1 i = an = n(n+ 1)/2. By using the result from exercise 1.

3. Use the result of exercise 1 to prove that
∑n

i=1 i(i+ 1) = n(n+ 1)(n+ 2)/3.

In a similar manner to how we solved the second question, we say that ak = k(k + 1)(k + 2)/3, and get
the LHS that we need.

ak − ak−1 =
k(k + 1)(k + 2)

3
− (k − 1)k(k + 1)

3
= k(k + 1).

This shows us that
∑n

i=1(ai − ai−1) =
∑n

i=1 i(i + 1) = an = n(n + 1)(n + 2)/3. By using the result from
exercise 1.

1.2 Mathematical Induction

1. Discover a formula for the following sum and prove that it is correct for every positive integer n:
n∑

i=1

(−1)i−1fi

Definition 1 (Fibonacci Sequence). The Fibonacci Sequence, named after Leonardo of Pisa (1170?-1250?)
who was nicknamed Fibonacci, is defined by the equations f1 = 1, f2 = 1, and fn = fn−1 + fn−2 for n ≥ 3.

To solve this problem of finding a formula, we will look for a pattern that we can deduce, for a value of
n, the sum is denoted by Sn:

n 1 2 3 4 5 6 7 8
Sn 1 0 2 -1 4 -4 9 -12

The pattern that stood out to me was Sn = (−1)n−1fn−1 + 1, obviously, we need to define f0 = 0 for
this to work. Now we have to prove the formula using induction. For n = 1, Sn = 1 using both the sum and
the formula. Let us assume the formula is correct for some n = k. Then the value if the sum for k + 1 can
be expressed as:

Sk+1 =
[
(−1)k−1fk−1 + 1

]
+ (−1)kfk+1

= (−1)k
[
fk+1 − fk−1

]
+ 1

= (−1)k
[
fk�������:0
+fk−1 − fk−1

]
+ 1

=⇒ Sk+1 = (−1)kfk + 1
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■

2. Use I2 to prove that αn−2 ≤ fn ≤ αn−1 for every positive integer n

Definition 2 (Second form of the principle of mathematical induction). Any set of positive integers which
contains the integer 1 and which contains k+1 whenever it contains the positive integers 1, 2, . . . , k, contains
all positive integers.

Definition 3 (α and β). Let α = (1+
√
5)/2 and β = (1−

√
5)/2, so that α and β are the roots of x2 = x+1.

For n = 1, we have α−1 ≤ f1 ≤ α0, and for n = 2, we have α0 ≤ f2 ≤ α1. Both hold true, we now
assume that the inequality holds for all n = 2 to k. To prove the inequality for n = k + 1, we will state the
inequality for the last two cases and add them up.

αk−3 ≤ fk−1≤ αk−2

αk−2 ≤ fk ≤ αk−1

On adding up the equations, we get this rather convenient form of inequality:

αk−3 + αk−2 ≤ fk + fk−1 ≤ αk−1 + αk−2

The answer should be obvious by now, if not, the reader is required to work out the result 1 + α = α2

and then try again.

αk−1 ≤ fk+1 ≤ αk+1

■

1.3 The Division Algorithm

Theorem 1. For all a, b ∈ Z, with b > 0, there exists unique q, r ∈ Z such that a = bq + r with 0 ≤ r < b

Proof. Basically, q is the quotient and r is the remainder. Consider the set S = {a− bx|x ∈ Z, a− bx ≥ 0}.
For this set, we will first choose a, b and vary x to get elements of the set. In general, to find the smallest
element r in S, we have to argue that the set S is not empty.

Claim: S ̸= ϕ
Case 1: a ≥ 0, we set x = 0, so that we get a− b(0) = a ∈ S. The set is not empty
Case 2: a < 0, we will set x = a, so that a− ba = a(1− b) ≥ 0. The set is not empty

Let r be the minimum value of S and q be the corresponding quotient for this value of r. We have
r = a− bq. Towards the contradiction, assume that r ≥ b:

r = a− bq ≥ b
r − b = a− b(q + 1) ≥ b− b ≥ 0

This means that r − b ∈ S because r − b = a− b(q′) where q′ = q + 1. But on the other hand, r − b < r
which contradicts our assumption that r is the minimum value of S. This implies that 0 ≤ r < b

Now, all that is left is to prove the uniqueness of q and r. Suppose that q, q′, r, r′ are such that a =
bq + r = bq′ + r′. Assume r′ ≥ r (this assumption can work either ways). We have b(q − q′) = r′ − r. The
LHS is a multiple of b and the RHS follows the inequality o ≤ r′ − r < b. The only way both can be true is
if LHS=RHS=0. This implies that q = q′ and r = r′. ■
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2 Divisibility Properties of Integers

2.1 Basic Properties

1. If m
∣∣(35n+ 26),m

∣∣(7n+ 3), and m > 1, prove that m = 11.

From the question, we can write that mα = 35n+26 and mβ = 7n+3 for some α, β ∈ Z. If we multiply
the second equation with 5 and subtract it from the first equation, we get

m(α− 5β) = 11.

11 is a prime which means that the only divisors are 1 and itself. Since m > 1, we can conclude that m = 11.

■

2.2 The Euclidean Algorithm

Theorem 2. Suppose a, b ∈ N, if we repeatedly perform the division algorithm:

a = bq1 + r1

b = r1q2 + r2

. . .

rn−2 = rn−1qn + 0;

then rn−1 = gcd(a, b).

Proof. There are three steps to this proof:

- We need to show that this algorithm halts:
The set {r1, r2, . . . , rn−2, rn−1} ∈ N and is strictly decreasing, this means that the set will truncate

somewhere.

- Show that the algorithm halts with a common divisor
We know rn−1

∣∣rn−2, this implies that rn−1

∣∣rn−3 and so on. All the dominoes fall from this. Finally,

rn−1

∣∣b and rn−1

∣∣a.
- Show that rn−1 is the GCD
Suppose there is a d such that d

∣∣a and d
∣∣b, we just have to prove that d

∣∣rn−1 for rn−1 to be the GCD.

From the first equation, d
∣∣a− bq =⇒ d

∣∣r1 =⇒ d
∣∣r − 2 =⇒ · · · =⇒ d

∣∣rn−1. ■

Theorem 3. (a, b) = 1 if and only if there exist integers x and y such that 1 = ax+ by.

1. If (a, c) = 1, prove that (a, bc) = (a, b).

Let (a, bc) = d1 and (a, b) = d2, we need to show that d1 = d2. The way we will do it is by proving that
d2
∣∣d1 and d1

∣∣d2. Proving the former is easier, because we already know that d2
∣∣a and d2

∣∣b. This implies

that d2
∣∣bc which makes it a common divisor for both a and bc. Thus, we have d2

∣∣d1.
Similarly for the second part, we just have to prove that d1

∣∣b because we anyway know that d1
∣∣a. We

can then use the common divisor rule and conclude that d1
∣∣d2. We are given that (a, c) = 1, from that, we

can write the following:
ax+ cy = 1,

abx+ bcy = b.
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Since d1
∣∣a and d1

∣∣bc, we can also write d1
∣∣abx and d1

∣∣bcy.
=⇒ d1

∣∣(abx+ bcy),

=⇒ d1
∣∣b.

As d1 is a common divisor to both a and b, it also divides d2. Thus, d1 = d2.

■

2. If (a, b) = 1, prove that (a+ b, a− b) = 1 or 2

We have (a, b) = 1 and (a + b, a − b) = d. This means that d divides both (a + b) and (a − b). The
implication is that a+b = rd and a−b = sd for some r, s ∈ Z. Adding up the equations, we get 2a = (r+s)d
and 2b = (r − s)d. Thus, d

∣∣2a and d
∣∣2b.

From the question, we know that the GCD of a and b is 1. If there is a d that divides 2a and 2b, it has
to be either 1 or 2.

■

3. If d
∣∣mn and (m,n) = 1, prove that d = d1d2 where d1

∣∣m, d2
∣∣n, and (d1, d2) = 1.

Let d1 = (d,m), we then automatically have d1
∣∣m and d2 = d/d1 =⇒ d1d2 = d. All that we have to

prove now is d2
∣∣n. Because m = Md1 and d = d2d1, we can write (M,d2) = 1 using Theorem 1. From

hypothesis, d
∣∣mn:

=⇒ dq = mn,

=⇒ d1d2q = Md1n

=⇒ d2
∣∣Mn

=⇒ d2
∣∣n ∵ (M,d2) = 1

■

4. If (a, b) = (c, d) = 1, b > 0, d > 0, and a
b + c

d is an integer, prove that b = d.

Both the fractions are in reduced form and if we assume that the sum is equal to n, we can write:

a

b
+

c

d
= n =⇒ a

b
=

dn− c

d
.

Because both are in reduced form, they are unique, and hence b = d. If there was a p that divided d and
dn− c, it would also have to divide c which contradicts the hypothesis (c, d) = 1.

■
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