Theorem 1. $\exp (x)=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}$.
Proof. Let $f(x)=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}$. First, we'll neglect the limits and expand $f(x)$ using the binomial theorem.

$$
f_{n}(x)=\sum_{k=0}^{n}\binom{x}{n}^{k} \frac{n!}{k!(n-k)!}
$$

Now, we will increase n to a sufficiently large value such that $\left|f_{n}(x)-\exp (x)\right|<\epsilon, \forall x$. Once we find such a value, our proof will be complete.

$$
\left|\exp (x)-f_{n}(x)\right|=\left|\sum_{k=0}^{n}\left(\frac{x^{k}}{k!}-\binom{x}{n}^{k} \frac{n!}{k!(n-k)!}\right)+\sum_{k=n+1}^{\infty} \frac{x^{k}}{k!}\right|
$$

We will make a slight change to the above equation and add a variable m.

$$
\begin{gathered}
\left|\exp (x)-f_{n}(x)\right|=\left|\sum_{k=0}^{m}\left(\frac{x^{k}}{k!}-\binom{x}{n}^{k} \frac{n!}{k!(n-k)!}\right)+\sum_{k=m+1}^{n}\left(\frac{x^{k}}{k!}-\binom{x}{n}^{k} \frac{n!}{k!(n-k)!}\right)+\sum_{k=n+1}^{\infty} \frac{x^{k}}{k!}\right| \\
\leq\left|\sum_{k=0}^{m}\left(\frac{x^{k}}{k!}-\binom{x}{n}^{k} \frac{n!}{k!(n-k)!}\right)\right|+\left|\sum_{k=m+1}^{n}\left(\frac{x^{k}}{k!}-\binom{x}{n}^{k} \frac{n!}{k!(n-k)!}\right)\right|+\left|\sum_{k=n+1}^{\infty} \frac{x^{k}}{k!}\right| \\
\leq\left|\sum_{k=0}^{m}\left(\frac{x^{k}}{k!}-\binom{x}{n}^{k} \frac{n!}{k!(n-k)!}\right)\right|+\left|\sum_{k=m+1}^{n} \frac{x^{k}}{k!}\right|+\left|\sum_{k=n+1}^{\infty} \frac{x^{k}}{k!}\right| \\
\leq\left|\sum_{k=0}^{m}\left(\frac{x^{k}}{k!}-\binom{x}{n}^{k} \frac{n!}{k!(n-k)!}\right)\right|+\left|\sum_{k=m+1}^{\infty} \frac{x^{k}}{k!}\right|
\end{gathered}
$$

We will look at the 2 terms individually, starting with the right. Since $\frac{x^{k}}{k!}$ is eventually decreasing to 0 , we can choose m large enough so $\frac{x^{m}}{m!}<\frac{\epsilon}{4}$ and select an n larger than that.

$$
\left|\sum_{k=m+1}^{\infty} \frac{x^{k}}{k!}\right| \leq \frac{\epsilon}{4} \sum_{k=m+1}^{\infty} 2^{-k}<\frac{\epsilon}{2}
$$

Now, let's look at the left sum. The following expression will help us understand why the left sum is small.

$$
\binom{x}{n}^{k} \frac{n!}{k!(n-k)!}=\frac{x^{k}(n(n-1) \ldots(n-k+1)}{n^{k} k!}=\frac{x^{k}}{k!} \frac{(n(n-1) \ldots(n-k+1)}{n^{k}} \approx \frac{x^{k}}{k!}
$$

This approximation is valid as the terms almost cancel out. Because of this each of the terms will be fairly small so hopefully we can make the entire sum small. A clever observation is $n(n-m+1) \leq$ $(n-c)(n-k+1+c), \forall k$ and positive c, this further means that

$$
1>\frac{(n(n-1) \ldots(n-k+1))}{n^{k}}>\left(\frac{n-m+1}{n}\right)^{m / 2}>0
$$

This further implies

$$
\left|\sum_{k=0}^{m}\left(\frac{x^{k}}{k!}-\binom{x}{n}^{k} \frac{n!}{k!(n-k)!}\right)\right| \leq\left|\sum_{k=0}^{m} \frac{x^{k}}{k!}\left(1-\left(\frac{n-m+1}{n}\right)^{m / 2}\right)\right|=\left|\left(1-\left(\frac{n-m+1}{n}\right)^{m / 2}\right) \sum_{k=0}^{m} \frac{x^{k}}{k!}\right|
$$

From this, we know that $\exp (x)$ is finite everywhere, $\exists c$ such that c is greater than all the partial sums of $\exp (x)$, therefore

$$
\left|\left(1-\left(\frac{n-m+1}{n}\right)^{m / 2}\right) \sum_{k=0}^{m} \frac{x^{k}}{k!}\right|<c\left(1-\left(\frac{n-m+1}{n}\right)^{m / 2}\right)
$$

We can now use Bernoulli's inequality to say that

$$
1>\left(\frac{n-m+1}{n}\right)^{m / 2}=\left(1-\frac{m+1}{n}\right)^{m / 2}>1-\frac{m^{2}+m}{2 n}
$$

Using this,

$$
c\left(1-\left(\frac{n-m+1}{n}\right)^{m / 2}\right)<\frac{c\left(m^{2}+m\right)}{2 n}
$$

We fixed m earlier, and we can use this to find out how large n must be, we get

$$
n>\frac{c\left(m^{2}+m\right)}{\epsilon}
$$

Ergo, putting all of this together

$$
\left|\exp (x)-f_{n}(x)\right| \leq\left|\sum_{k=0}^{m}\left(\frac{x^{k}}{k!}-\binom{x}{n}^{k} \frac{n!}{k!(n-k)!}\right)\right|+\left|\sum_{k=m+1}^{\infty} \frac{x^{k}}{k!}\right|<\epsilon
$$

This shows that $f_{n} \rightarrow \exp (x)$ pointwise, in other words, $\exp (x)=f(x)$.
QED.

