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Proof. Let f(x) = lim
n→∞
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. First, we’ll neglect the limits and expand f(x) using the binomial

theorem.
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Now, we will increase n to a sufficiently large value such that |fn(x) − exp (x)| < ε,∀x. Once we find
such a value, our proof will be complete.

| exp (x)− fn(x)| =
∣∣∣∣ n∑
k=0

(
xk

k!
−
(
x

n

)k
n!

k!(n− k)!

)
+

∞∑
k=n+1

xk

k!

∣∣∣∣.
We will make a slight change to the above equation and add a variable m.
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We will look at the 2 terms individually, starting with the right. Since xk

k!
is eventually decreasing to

0, we can choose m large enough so xm

m!
< ε

4
and select an n larger than that.∣∣∣∣ ∞∑
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Now, let’s look at the left sum. The following expression will help us understand why the left sum is
small. (
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This approximation is valid as the terms almost cancel out. Because of this each of the terms will
be fairly small so hopefully we can make the entire sum small. A clever observation is n(n − m + 1) ≤
(n− c)(n− k + 1 + c),∀k and positive c, this further means that
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(n(n− 1) . . . (n− k + 1))

nk
>
(
n−m+ 1

n

)m/2
> 0

This further implies
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From this, we know that exp (x) is finite everywhere, ∃c such that c is greater than all the partial sums

of exp (x), therefore ∣∣∣∣(1−
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We can now use Bernoulli’s inequality to say that
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Using this,
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We fixed m earlier, and we can use this to find out how large n must be, we get
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Ergo, putting all of this together

| exp (x)− fn(x)| ≤
∣∣∣∣ m∑
k=0

(
xk

k!
−
(
x

n

)k
n!

k!(n− k)!

)∣∣∣∣+ ∣∣∣∣ ∞∑
k=m+1

xk

k!

∣∣∣∣ < ε

This shows that fn → exp(x) pointwise, in other words, exp(x) = f(x).
QED.
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