Theorem 1. exp (z) = lim (1 + i) :
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Proof. Let f(zr) = lim <1 + i) . First, we’ll neglect the limits and expand f(x) using the binomial
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Now, we will increase n to a sufficiently large value such that |f,(z) — exp ()| < €, Vz. Once we find

such a value, our proof will be complete.
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We will make a slight change to the above equation and add a variable m.
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We will look at the 2 terms individually, starting with the right. Since %;: is eventually decreasing to

0, we can choose m large enough so %L < 7 and select an n larger than that.
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Now, let’s look at the left sum. The following expression will help us understand why the left sum is
small.
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This approximation is valid as the terms almost cancel out. Because of this each of the terms will
be fairly small so hopefully we can make the entire sum small. A clever observation is n(n —m + 1) <
(n—c¢)(n—k+ 1+ c¢),Vk and positive ¢, this further means that
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This further implies
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From this, we know that exp (z) is finite everywhere, 3¢ such that ¢ is greater than all the partial sums

We can now use Bernoulli’s inequality to say that
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Using this,
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We fixed m earlier, and we can use this to find out how large n must be, we get
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Ergo, putting all of this together
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This shows that f,, — exp(x) pointwise, in other words, exp(z) = f(x).
QED.



